Space Quest

A Beginner Coding Activity for Grades 1 and Up

Teacher Guide

Table of Contents

Quick Start
Space Quest Facts

Activity Guide
Learning Objectives
How to Complete the Puzzles
Block Guide
Standards Alignment
Optional Warm-up Activity: Simon Says
Modules 1-9
Modules 10-16
Modules 17-21
Modules 22-28

Activity Wrap-Up

Classroom Setup
Tracking Student Progress
Student Certificates

Other Hour of Code Activities

Going Beyond an Hour
Do More with Tynker
Learning Pathways
Tynker for Schools

About Tynker

About the Hour of Code

w w

o U n

11
12
14
19
22
25

29

30
30
30

31

32
32
32
32

33
33

https://docs.google.com/document/d/1NjnDT86jvqW4T8Dm0X8Bxrey7EKbOisEyT5VW-KMNL4/edit#heading=h.vtg45fqewe0a
https://docs.google.com/document/d/1NjnDT86jvqW4T8Dm0X8Bxrey7EKbOisEyT5VW-KMNL4/edit#heading=h.vtg45fqewe0a

Quick Start

Space Quest Facts

e Web Address: tynker.com/hour-of-code/space-quest
e Coding skill level: Beginner

e Recommended grade level: Grade 1+ (Reading skills required)

e Time Required: 60 Minutes

e Number of modules: 28

e Coding language: Block-based, Python, JavaScript

e Localization: English, Simplified Chinese, Spanish,

German, French, Japanese

Welcome!

If you're new to Tynker, check out our Hour of Code page to see all Tynker activities. Here,
you'll find Space Quest and Dragon Blast, the first Tynker Hour of Code activities available
in Spanish, Chinese, German, French, and Japanese as well as English. Note that the
following activities include exciting concept videos that explain computer science concepts:
Candy Quest, Space Quest, and Dragon Dash.

What is Space Quest?

Space Quest is a puzzle-based activity where students complete simple coding puzzles and
learn computational thinking skills along the way. They play as an astronaut and trek across
the surface of an alien planet.

Space Quest is a simplified version of a curriculum created by Tynker for the Everyone Can
Code program by Apple. For more information about using the full course in your
classroom, check out the iBook Get Started with Code 1 from Apple.

Who is this activity for?

Space Quest is intended for students in grades 1 and up with no coding experience.
Students who are older and have more coding experience should check out Dragon Blast.
Strong reading skills are also recommended.

http://tynker.com/hour-of-code/space-quest
https://www.tynker.com/hour-of-code/
https://itunes.apple.com/book/id1226776727

What will my students learn?

The coding concepts covered in this activity are Sequencing, Loops, Debugging, and
Conditionals. The puzzle sequence maps to CSTA Computer Science standards 1A-AP-Q9,
1A-AP-11, 1B-A-5-4, 1B-A-3-7, and 1B-A-6-8. For a complete list of standards, see the
Standards Alignment section of this guide.

What devices do | need?

Each student needs to have a desktop computer, laptop computer, or Chromebook with an
internet connection and an up-to-date browser. No downloads are required. If not enough
devices are available, students can work in pairs on the same device.

How should | prepare to teach Space Quest?

The best way to prepare for an Hour of Code is to know the activity. Take half an hour to try
Space Quest on your own beforehand. If you need help, feel free to consult the Activity
Guide, which contains a full answer key and block glossary.

How can Tynker help me manage my Hour of Code?

Tynker has several free features for registered teachers that will help you manage your
Hour of Code. If you set your students up with a Tynker classroom, you will be able to track
their progress through Space Quest and print certificates for them to keep. For more
information, see the Classroom Setup section of this guide.

How do | change my language settings?

Tynker will automatically detect your language preferences through your browser. If you
are using a language that is supported by Space Quest, Tynker will use that language. A
language selection feature will be implemented soon.

https://docs.google.com/document/d/1NjnDT86jvqW4T8Dm0X8Bxrey7EKbOisEyT5VW-KMNL4/edit#heading=h.vtg45fqewe0a
https://docs.google.com/document/d/1NjnDT86jvqW4T8Dm0X8Bxrey7EKbOisEyT5VW-KMNL4/edit#heading=h.vtg45fqewe0a

Activity Guide

This activity is designed for self-directed learning. The puzzles are as engaging as they are
challenging. Aside from the optional Warm-up Activity, you will not have to lead your class
through Space Quest. Your goal will be to help students out individually.

Tynker puzzles increase in complexity, and students may need help occasionally. The best
way to help students proceed is to give them hints or clues that allow them to arrive at the
answers themselves. If you give correct answers directly, your students won't learn as
much as they otherwise could. If you need any help answering student questions, see the
General Information section, which explains the code blocks and the Puzzle interface.

Before your Hour of Code, if you have extra time, get your students in the coding mindset
with @ Warm-up Activity. This is a slightly modified version of Simon Says.

Here is a sample schedule:

e 10 minutes: Warm up with Simon Says
e 50 minutes: Complete Space Quest

https://docs.google.com/document/d/1NjnDT86jvqW4T8Dm0X8Bxrey7EKbOisEyT5VW-KMNL4/edit#heading=h.zcp7yjnf4wll

e If you have more time, choose from over 30 Tynker activities based on interest,
grade and experience.

Learning Objectives

Your students will be using logical skills and computational thinking to manipulate code.
Space Quest is organized into sections of 4-8 puzzles, corresponding to the following
concepts:

Sequencing: A sequence is the order in which instructions are performed. By altering the
sequence of code blocks, your students will learn that the order of events matters.

Loops: A loop is a set of code that gets repeated a certain number of times or until a certain
condition is met. As they work with loops, your students will learn to analyze patterns.

Debugging: A bug is an error in a piece of code and debugging is the process of finding and
fixing that error. As they spot bugs, your students will learn to critically examine code.

Conditionals: A condition is something that can be checked to see if it is true or false. As
they use conditional statements, your students will learn to consider multiple scenarios.

Click the links above to jump to the Answer Keys for each section.

https://docs.google.com/document/d/1NjnDT86jvqW4T8Dm0X8Bxrey7EKbOisEyT5VW-KMNL4/edit#heading=h.a9pu56b9wigl

How to Complete the Puzzles

Getting Started
To begin Space Quest, have your students open a browser tab to this URL:
tynker.com/hour-of-code/space-quest

The Workspace

« LIBRARY

= .

ACTIVE CODE
CLICK TO SHOW OR

DRAG BLOCK TO HIDE CODE BLOCKS

CONNECT WITH ON START

CLICK TO SWITCH BETWEEN
(" CODE LANGUAGES PLAY BUTTON ,_}

In each puzzle, an overlay will appear containing the workspace. The darker section on the
left is the library and shows which types of blocks are available for use for this particular
puzzle. In this situation, the only block available is the “walk” block. The lighter section on
the right is the active code area that your students will place their working code in. In this
situation, there is already a “on start” code block on the active code area. To add a code
block to the active code, simply drag the block from the library and connect it to a block in

the active code area.

http://tynker.com/hour-of-code/space-quest

Visual Code Blocks, JavaScript, and Python

A code block is a block representing a piece of code that your students can use to make
their program. The text in the code block has three modes that can be selected at the
bottom left of the workspace: Tynker visual blocks, JavaScript, and Python. For younger
students, we recommend using Tynker visual blocks, but students who want a challenge
may want to use the other languages. Note that answers we provide use the Tynker blocks,
but if you need a reference for JavaScript and Python, we have included the corresponding
code in the Blocks Guide.

Running Your Code

To run the code, your students should click on the play button on the bottom right of the
screen. This will remove the workspace and the cadet should follow the code blocks that
your students added to the active code area. While the cadet is moving, the code will be
shown at the upper left. Your students can watch the code blocks execute by following
either the green outlines. The green will move as each code block is executed.

Common Issues

e Disconnected blocks
o Make sure your students have connected all of their blocks and that the
blocks are connected to the “on start” block. Code that is not connected to
the “on start” block will not be executed.
e Using too few or too many blocks
o Drag more blocks over if the cadet does not reach the end. If your students
accidentally add too many blocks or a block that they do not want, then they
can drag the block from the right to the left and a trash can symbol will show
up. Once they release the block, the block will be removed from their code.
e Deleting the “on start” block
o If students accidentally delete the “on start” block, they will need to restart
the puzzle by clicking the button on the top right with the three lines
and then selecting the refresh button to reset their code.
e Incorrect sequencing
o For all of the puzzles, there are particular actions that have to happen at
particular times. For some of the puzzles there is only one solution for the
puzzle. For others there may be multiple ways to organize the code blocks to
get the solution, especially when loops are involved. If your students are

cl®

struggling, suggest that they read through the code blocks one by one and
trace what will happen to their cadet with their finger.

Block Guide

JavaScript: _on_start()
Python: _on_start()

EE

JavaScript: walk();
Python: walk()

o
c
3
©

JavaScript: jump();
Python: jump()

Y
@
g
@
Q
=

repeat @)

JavaScript: for (vari=0;i<10; i++){ }
Python: for i in range(0, 10):

Repeat Until
repeat until

JavaScript: while (! _Med_Kit()){ }
Python: while (not _Med_Kit()):

This is an event block that will run all code
attached to it the play button is pressed.
Students must attach their code to the bottom
of the “on start” block for it to run.

Moves the cadet one space forward.

Makes the cadet jump over the obstacle and
land on the opposite side of the obstacle.

Everything inside of this block is repeated a
certain number of times. The amount of times
that the code repeats is the number that is
next to the word repeat (the count). To
change the number of repeats, click on the
count and enter the number that you want.
This is called a counting loop because it
counts the number of times that the loop has
been repeated and stops when it hits the
inputted number.

Everything inside of this block is repeated
until a goal represented by the false is
reached. If the goal is never reached, the
code will be repeated forever. This is called a
conditional loop because it relies on a
condition being true to stop.

If
if then

JavaScript: if (_Stacked_Aliens()){ }
Python: if (_Stacked_Aliens()):

Super Jump

JavaScript: super_jump();
Python: super_jump()

If-Else

JavaScript: if (_Stacked_Aliens()){ } else {}
Python: if (_Stacked_Aliens()): else:

If the statement in the between the “if” and
the “then” is true, then the code inside the
block will execute. Otherwise, the code inside
the block will be ignored. This block will
perform the check every time it is executed.

Makes the cadet do a high jump over a really
tall obstacle and land on the opposite side of
the obstacle.

If the statement in the between the “if’ and
the “then” is true, then the code blocks in the
indented section immediately below it will
execute and the code blocks in the next
indented section will be ignored. Otherwise,
the code blocks in the indented section below
the “else” statement will execute and the
earlier code blocks will be ignored.

Standards Alignment

Space Quest is mapped to the following standards:

U.S. Standards

CSTA Computer Science:

e 1A-AP-09, 1A-AP-11, 1B-A-5-4, 1B-A-3-7, 1B-A-6-8

Computer Science for California-CS CA:

o K-2.AP.12, K-2.AP.13, K-2.AP.14, K-2.AP.16

Common Core CCSS-Math:

e 1.0A.1,2.0A.1,1.0A.2,2.0A.2, 1.0A3, 2.0A.3, 1.MD.4, MP.1, 5.G.1, 5.G.2, 6.NS.6

Common Core CCSS-ELA:

e 1.RIL3, 2.RI.3, 1.RI.6, 2.RI.6, 1.RI.7, 2.RI.7, 1.RI.10, 2.RI.10, 3.RI.3, 4.RI.3, 3.RL.5, 3.Rl.7,
4.Rl.7, 1.RF.1, 2.RF.1, 1.RF.4, 2.RF.4, 5.RF.4, 3.RF.3, 4.RF.3, 3.RF.4, 4.RF.4, 1.L.3, 2.L.3,
2.L.6, 6-8.RST.3, 6-8.RST .4, 6-8.RST.7, 3.W.3, 4 W.3, 3.W.4, 4. W.4, 3.W.6, 4.W.6, 3.L.1,
4.1.1,3.L.2,4.L.2,3.L.3,4.L3,3.L4,4.L4

International Society for Technology in Education-ISTE:

e 1.1.¢,1.1.d, 1.4.d,15. 1.5d 1.6.b,1.7.c

U.K. Standards
National Curriculum in England (computing):

Key Stage 1
e Use logical reasoning to predict the behaviour of simple programs
e Use technology safely and respectfully, keeping personal information private;
identify where to go for help and support when they have concerns about content
or contact on the internet or other online technologies

Key Stage 2

e Design, write and debug programs that accomplish specific goals, including
controlling or simulating physical systems; solve problems by decomposing them
into smaller parts

e Use logical reasoning to explain how some simple algorithms work and to detect
and correct errors in algorithms and programs

e Understand computer networks, including the internet; how they can provide
multiple services, such as the World Wide Web, and the opportunities they offer
for communication and collaboration

e Use technology safely, respectfully and responsibly; recognise
acceptable/unacceptable behaviour; identify a range of ways to report concerns
about content and contact

Optional Warm-up Activity: Simon Says
If you have more than 50 minutes available, try Simon Says as an unplugged coding activity.
Simon Says is a classic game for kids in which one person gives simple instructions such as

“touch your nose”, “reach for the sky”, or “jump in the air”. If you are unfamiliar with the
game or need to review, here are the rules:

e Only follow instructions that come after the phrase “Simon Says". Players are “out”,
or eliminated, when they fail to follow an instruction preceded by “Simon Says”, or
follow an instruction NOT preceded by “Simon Says.”

e The object of the game for the player acting as Simon is to get the other players out
by giving tricky commands, and the object of the game for everyone else is to be the
last one still in the game. If one player remains at the end of the game, that player
wins; if the last few players are eliminated at once, Simon wins.

In your Simon Says game, give some specific instructions that will help demonstrate coding
concepts.

e Sequencing: “Simon Says, step forward, then step back.”
e Loops: “Simon Says, pat your head three times.”
e Conditions: “Simon Says, If you are wearing green, touch your head.”

As you transition into playing Space Quest, explain to your students that this activity
actually has a lot in common with Simon Says:

e They are Simon, and their astronaut is doing what they say-- but only if they say it
just right!

e Leaving "on start" without a "walk" block is like saying “Simon Says” with no
instructions. The astronaut will not know what to do!

e Placing a "walk" block by itself in the center is like saying “Touch your nose” instead
of “Simon Says touch your nose”. The astronaut won't follow those instructions.

As your students progress, remind them of the specific coding concepts they used in this
warm-up activity.

Modules 1-9

Concepts: Sequencing

Overview

These puzzles are designed to introduce your students to the Tynker coding environment
and to practice with basic coding blocks. Students will also be exposed to sequencing. A
sequence is the order in which instructions are performed. Your students will need to use
the code blocks to define specific sequence of instructions for the cadet to follow to reach
the goal at the end of the puzzle.

Modules 8 and 9 are slightly different than the previous puzzles. Module 8 contains a short
cutscene that your students will need to click through as well as an introduction to some
code blocks that make the cadets dance. They will have the chance to test out some of the
dancing blocks before moving on to module 9. Module 9 will give your students a chance to
create a dance routine for the two cadets. They can link together as many or as few dance
moves as they would like. When your students want to program Buzz, they need to select
Buzz on the left side of the screen and use that workspace to program Buzz. When your
students want to program Mae, they need to select Mae on the left side of the screen and
use that workspace to program Mae.

Module 1: Choose a space cadet for the
Select a Space mission.
Cadet and

Introduction

Your students must
choose their
character. They have
the choice between
two space cadets,
Buzz and Mae. After
that, an introduction
sequence will play.

Module 3;
Introduction

Move the cadet one
space forward to
collect the ray gun.

Module 4:
Collect the Ray

Gun

Move the cadet two
spaces forward to
collect the ray gun.

,b;h’;‘\

Module 5;
Collect the
Tablet

Move the cadet four
spaces forward to
collect the tablet.
This puzzle is very
similar to Collect the
Ray Gun.

Module 6;

Jump the Rock
Avoid the rock by
jumping and move
the cadet to the med
kit.

Module 7;
Beware of
Aliens

Avoid the aliens by
jumping and move
the cadet to the
power cell.

Module 8:
Intro to Space

Dance Party

Click through the
introduction and click
on the dance code
blocks to see what
each one does.

),

moonwalk

*

Module 9: Erees -
Space Dance , oo o

Pa rty 'L': moonwalk ﬂip
Program Mae and dance dance
Buzz to dance. Kick

jump

flip

Modules 10-16

Concepts: Sequencing, Loops

Overview

These puzzles are designed to introduce your students to loops. A loop is a set of code that
gets repeated a certain number of times or until a certain condition is met. Loops allow
programmers to reduce the amount of code that they have to write. To complete the
puzzles, your students will need to look for a repeating pattern that can be used to reach
the end goal. That repeating pattern will be what they place inside the loop block.

Module 11;

Use a Loop
Use a “repeat” block
to make the cadet
walk to the med kit.

Y e

(‘L‘--------

Module 12;

on start
Jump Loop repeat I
Use a “repeat” block s

to make the cadet
jump over all of the

v

obstacles.
e -
":—.2\-"‘
MOV R\
s o -
Module 13;
Detect the
Pattern 1

Use a combination of
“repeat”, “walk”, and
“jump” blocks to
make the cadet avoid
the obstacles and get
to the med kit.

Module 15:
Another Loop

Use a “repeat until”
block to make the
cadet walk to the
med kit.

Module 16;
Get the Med
Kit

Use the “repeat until”
block to make the
cadet avoid the

obstacles and get to
the med kit.

(») on start

repeat until £ Med Kit

walk

.

(») on start

repeat until &5 Med Kit
jump

>

7\

® .-

Gy,

£ LN 8
=S s

Modules 17-21

Concepts: Sequencing, Loops, Debugging

Overview

These puzzles are designed to introduce your students to debugging. A bug is an errorin a
piece of code and debugging is the process of finding and fixing that error. In each puzzle,
your students will be given a puzzle and a piece of code that has a bug in it. They will need
to fix the bug so that the cadet can do what they are supposed to do. There are a couple of
ways your students can approach debugging:

e Run the buggy code to see what happens before modifying the code.

e Read through the buggy code and use a finger to trace what should be happening to
the cadet as each code block is executed. They may also want to say the steps
outloud to understand what is happening.

e Ignore the buggy code and write out by hand what they would do if they were
approaching the puzzle as they did with previous puzzles. Then compare that code
to the buggy code.

Module 17;

Broken Path

Debug the code so
that the cadet can
reach the tablet.
Debugging Steps:
Increase the countin
the “repeat” block
from5to 7.

‘.
) ,

Module 18; Fix

the Loop

Debug the code so
the cadet can avoid
the obstacles and
reach the med kit.
Debugging Steps:
Decrease the count
in the “repeat” block
from 4 to 3. Add a
“walk” block after the
“repeat” block.

Module 19;
Ouch! Avoid

the Obstacles

Debug the code so
that the cadet can
avoid the obstacles
and reach the tablet.
Answer: Increase the
countin the “repeat”

block from 2 to 3. 6{/\
H I’H " :\‘_‘,

Switch the “jump (%“m

and the “walk” blocks TN

inside the “repeat”

block by dragging the

“walk” block up.

Module 20:;

Broken Loop

Debug the code so
that the cadet can
avoid the aliens and
reach the ray gun.
Debugging Steps:
Increase the count in
the “repeat” block

on start

from 2 to 3. Add a f\
“walk” block before 0:’
and after the “repeat” e\

block. \

Module 21:
More
Debugging

Debug the code so
that the space cadet
can reach the med kit
while avoiding the

aliens.

Debugging Steps: >
Increase the count in //\u1 -
the “repeat” block 6’2: \\ "(u)"
from 2to 3. Add a LN

second “repeat” block
with count 3 and
containing a “walk”
block.

Modules 22-28

Concepts: Sequencing, Loops, Conditionals

Overview

These puzzles are designed to introduce your students to conditions and conditional
statements. A condition is something that can be checked to see if it is true or false. For
example, the computer can check if the cadet has reached the med kit. If the cadet is at the
med kit, the condition is true, if not the condition is false. A conditional statement gives
certain instructions when certain conditions are true. In these puzzles, your students will be
using if statements. An if statement is a conditional statement that gives instruction only if
the condition is true. For example, if you said the if statement “If you're happy, clap your
hands”, your students would only clap their hands if they are happy. Otherwise, the
command “clap your hands” would be ignored. There are also if-else statements. If-else
statements are the same as if statements but the have the extra “else” component which
contains the instructions that are to be followed if the condition is not true.

Module 23;
Shifty Stacked e m, op—
Aliens =

if 7 Stacked Aliens then |

Use the “repeat until”
and “if” blocks to
move the cadet to walk

super jump

the crystal.

Module 24;
Different
Shifty Aliens

Avoid the moving
aliens and move the
cadet to the crystal.
Use the conditional
“if" blocks to check if
there is either an
alien or a set of
stacked aliens in
front of you before
walking forward.

Module 25:
Loop with
Shifty Aliens

Use a “repeat-until”
block to move the

cadet to the crystal.
Use the conditional

(») on start

repeat until % Crystal
if ¥ stacked Aliens then |

super jump

if “", Aliens then

jump

/J{;g\\

-l-
Q
'.’ -)

(») on start

repeat until % Crystal

if ¥ stacked Aliens then |

super jump
else

walk

“if" blocks to check if
there is a set of //\ ﬂ
stacked aliens in 0 Q.

front of you or if you (“6‘ o—7 ;ﬂ%
2 - - &i!& -\ - e =

can just walk
forward.

Module 26: To
Jump or to

Super jJump
Use a “repeat-until”
block to move the
cadet to the crystal.
Use the conditional
“if" blocks to check if
there is either an
alien or a set of
stacked aliens in
front of you before
walking forward.

Module 27:;
More Shifty
Aliens

Use a “repeat-until”
block to move the
cadet to the crystal.
Use the conditional
“if" blocks to check if
there is either an
alien or a set of
stacked aliens in
front of you before
walking forward.
Note that the aliens
can change from a
single alien to a set
of stacked aliens at
any time.

(») on start

repeat until % Crystal

if £, Aliens then <

jump

if ¥ stacked Aliens then

super jump

(») on start

repeat until ¢ Crystal
if .2, Aliens then <

jump

if ¥ stacked Aliens then

super jump
else

walk

\

A:“U’ \

ey [
5 x> -

After your students have completed all of the puzzles, there will be a short cutscene of the
cadet blasting off.

Activity Wrap-Up

Once your students have seen the final cutscene, they will have completed their hour of
code! Over the course of the 23 puzzles, your students will have explored the importance
of sequences, improved their code by finding patterns and using loops, analyzed and
tested code through debugging, and learned about how computers use conditionals to
make decisions. These skills are fundamental to programming and your students will now
have a good programming foundation with which to build on.

Other than their importance in programming, the concepts covered in this Hour of Code
activity can be carried over into other subjects such as math, science, music, and literature.
Scientists must perform the steps in an experiment in a particular sequence. Composers
condense the length of sheet music by creating loops with phrases that indicate to the
performer to repeat a specific part of music. Mathematicians correct their work by
analyzing what their calculations should do and correcting errors just as programmers
debug their code. Authors can create a large number of stories from a small set of
conditional statements by writing adventure stories where different events happen
depending on the choices the reader makes. Check out Tynker's Hour of Code STEM
Activities page to get started using computer science throughout your curriculum.

We hope that your students enjoyed their programming with Tynker and will continue to
develop their coding skills outside of Hour of Code. Read on for more information about
how to continue your students’ coding journey.

https://www.tynker.com/hour-of-code/stem-activities
https://www.tynker.com/hour-of-code/stem-activities

Classroom Setup

Click here to access Tynker's Quick Start guide for teachers. It only takes a few minutes to

make a free Teacher account and a Tynker classroom for your students. If you are already
set up with Google Classroom or Clever, you can use those services to automatically sync

student accounts and classroom information with Tynker.

If you set your students up with a Tynker classroom, you will be able to:
e Track your students’ progress through Space Quest
e Print certificates of completion for your students to keep
e Save students’ progress to their accounts, so that they can continue coding at home
e View teacher guides and answer keys for all Tynker Hour of Code activities
e Access a free introductory coding course for your class
e Give your students access to all of Tynker's free content

Tracking Student Progress

Once you setup your students with a Tynker classroom, you'll be able to observe their
progress in Space Quest using your Teacher Dashboard.

e Go to your Teacher Dashboard and select your classroom.

e Navigate to the “Gradebook” tab, then choose “Hour of Code.”

Gradebook

Hour of Code Mobile Puzzles Everyone Can Code Lesson Progress Quiz Results Concepts Mastery

e You will be able to see the amount of puzzles your students have completed for
each Hour of Code activity, including Space Quest. Refresh the page to update it.

Student Certificates

Every time a student completes an Hour of Code coding activity in Tynker, they earn a
badge that is added to their certificate. There are 29 badges that they can earn, so they'll be
really excited to complete all the activities!

While signed in to a Teacher account, you can print

Tenw n

certificates by clicking on a classroom from your geeatictte o Acbiengy, ccutiate of Achicuey,
5, [* (]

© st

Teacher dashboard, clicking the “Gradebook” tab, going
to “Hour of Code”, and clicking the “Print All Certificates”

https://www.tynker.com/support/QuickStartTeacherGuide.pdf
https://www.tynker.com/hour-of-code/teacher
https://www.tynker.com/school/courses/show?id=0-programming-100

button. This will only print certificates for student accounts assigned to the selected
classroom.

Other Hour of Code Activities

Tynker offers many other tutorials for the Hour of Code, including two other puzzle-based
adventures for beginners: Candy Quest and Puppy Adventure. These activities are your
best options if you are interested in having another Hour of Code with the same group of
students. For teachers who are interested in the creative side of coding, we recommend
Spin Draw and Peep: Dance with Friends. Check out the main Tynker Hour of Code page to
see all the tutorials!

Candy Quest [Puppy Adventure o)
Beginner Beginner

Mod Minecraft X Peep: Dance with Friends X
Easy Modding Beginner

https://www.tynker.com/hour-of-code/candy-quest
https://www.tynker.com/hour-of-code/puppy-adventure
https://www.tynker.com/hour-of-code/spin-draw
https://www.tynker.com/hour-of-code/peep-dance-with-friends
https://www.tynker.com/hour-of-code/

Going Beyond an Hour

Do More with Tynker

If your students enjoyed an Hour of Code, they're sure to enjoy the rest of what Tynker has
to offer! Tynker offers a complete premium solution for schools to teach Computer Science.
Over 300 hours of lessons are available to take K-8 students from block coding to advanced
text coding. We offer tons of resources for teachers, including comprehensive guides, free

webinars, and a forum to connect with other educators.

Learning Pathways

With Tynker, kids don't just acquire programming skills-- they can explore the world of

possibilities that coding opens up. Tynker has several interest-driven learning paths that

make coding fun, both inside and outside the classroom.

Coding and Game Design: Your students can use Tynker Workshop, a powerful tool
for crafting original programs to make games, stories, animations and other
projects . They can even share their work with other kids in the Tynker Community.
Drones and Robotics: Tynker integrates with connected toys, including Parrot

drones and Lego WeDo robotics kits, so kids can see their code come to life.
Minecraft: Tynker integrates with Minecraft so your students can learn coding
through a game they love. Tynker offers skin and texture editing, as well as a custom
Mod Workshop that lets kids try their original code in Minecraft.

Tynker for Schools

Used in over 60,000 schools, our award-winning platform has flexible plans to meet your
classroom, school, or district needs. All solutions include:

Grade-specific courses that teach visual coding, JavaScript, Python, robotics and
drones

A library of NGSS and Common Core compliant STEM courses that are great for
project-based learning

Automatic assessment and mastery charts for the school, class and student level
Easy classroom management with Google Classroom and Clever integration
Professional training, free webinars and other teacher training resources

About Tynker

Tynker is a creative platform designed to make coding fun to learn and easy to teach.
Tynker's mission is to empower kids to become makers and equip them with computing
skills for today’s digital world. Over 60 million kids have begun their coding journey with
Tynker!

About the Hour of Code

The Hour of Code is a global learning event in which schools and other organizations set
aside an hour to teach coding. The event is held every December during Computer Science
Education Week. You can also organize an Hour of Code year-round.

The goal of the Hour of Code is to expand access to computer science education for people
of all backgrounds. Learning computer science helps students develop logic and creativity,
and prepares them for the changing demands of the 21st century.

Tynker has been a leading provider of lessons for the Hour of Code since the event began
in 2013. Since then, over 100 million students from 180 countries have finished an Hour of
Code. For more information, visit the Hour of Code website.

If you have any issues or questions, just send us an email at support@tynker.com.

Happy coding!

https://hourofcode.com/#faq

